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Chlorine dioxide (ClO2) inactivation experiments were conducted with adenovirus type 40 (AD40) and feline
calicivirus (FCV). Experiments were carried out in buffered, disinfectant demand-free water under high- and
low-pH and -temperature conditions. Ct values (the concentration of ClO2 multiplied by contact time with the
virus) were calculated directly from bench-scale experiments and from application of the efficiency factor Hom
(EFH) model. AD40 Ct ranges for 4-log inactivation (Ct99.99%) at 5°C were >0.77 to <1.53 mg/liter � min and
>0.80 to <1.59 mg/liter � min for pH 6 and 8, respectively. For 15°C AD40 experiments, >0.49 to <0.74
mg/liter � min and <0.12 mg/liter � min Ct99.99% ranges were observed for pH 6 and 8, respectively. FCV
Ct99.99% ranges for 5°C experiments were >20.20 to <30.30 mg/liter � min and >0.68 mg/liter � min for pH
6 and 8, respectively. For 15°C FCV experiments, Ct99.99% ranges were >4.20 to <6.72 and <0.18 mg/liter �
min for pH 6 and 8, respectively. Viral inactivation was higher at pH 8 than at pH 6 and at 15°C than at 5°C.
Comparison of Ct values and inactivation curves demonstrated that the EFH model described bench-scale
experiment data very well. Observed bench-scale Ct99.99% ranges and EFH model Ct99.99% values demonstrated
that FCV is more resistant to ClO2 than AD40 for the conditions studied. U.S. Environmental Protection
Agency guidance manual Ct99.99% values are higher than Ct99.99% values calculated from bench-scale experi-
ments and from EFH model application.

According to the U.S. Environmental Protection Agency
(EPA) National Primary Drinking Water Standards, enteric
viruses must be removed or inactivated by 4 logs (99.99%)
from source water by filtration and disinfection or by a com-
bination of these technologies (48). Viral pathogens can bypass
conventional filtration processes due to their small size, mak-
ing disinfection an important treatment barrier between drink-
ing water consumers and viral gastroenteritis. While chlorine is
the most common disinfectant in the United States for drink-
ing water and wastewater treatment, alternative disinfectants
are needed to reduce highly chlorine resistant pathogens, such
as Cryptosporidium parvum. UV light disinfection is effective at
reducing Cryptosporidium oocysts (6, 34), and it is therefore an
attractive alternative disinfectant to chlorine for drinking water
treatment. Recent evidence, however, has shown that UV light
is ineffective at reducing enteric adenovirus at doses commonly
applied by water treatment systems (45). Furthermore, UV
light water disinfection leaves no residual for protection of
potable water after it leaves the treatment plant. To effectively
reduce viruses by 99.99% and to maintain a disinfectant resid-
ual in the distribution system, a secondary disinfectant is
needed.

ClO2 is an alternative to chlorine as a primary disinfectant or
can serve as a secondary disinfectant for UV treatment sys-
tems. Advantages of ClO2 disinfection include (i) oxidation of

iron and manganese (reduces discoloration of finished water),
(ii) no trihalomethane formation, (iii) no reaction with ammo-
nia, (iv) less affected by the pH conditions typical of drinking
water than is chlorine, (v) a relatively persistent residual, and
(vi) reduction of tastes and odors caused by organic and sul-
furous compounds (1, 5). Disadvantages of ClO2 disinfection
include (i) formation of organic halides, (ii) formation of chlo-
rite and chlorate, and (iii) production of taste and odors at
concentrations of �0.5 mg/liter (5). However, this strong oxi-
dant is a useful and attractive alternative to chlorine for the
advantages listed above and its reported increased ability to
reduce pathogenic microorganisms in water. Previous studies
have reported that ClO2 effectively inactivates several viruses
in water and sewage (14, 21, 39, 43), but limited information is
available concerning the reduction of caliciviruses and adeno-
viruses in drinking water.

The EPA, mandated by the Safe Drinking Water Act, pub-
lished the Drinking Water Contaminant Candidate List (CCL)
in 1998 (12). This list includes chemical and microbial contam-
inants that are known or anticipated to occur in public water
systems. These contaminants are under regulatory consider-
ation, since little to no information regarding health, drinking,
wastewater treatment, or analytical methodology is currently
available. Enteric viruses and caliciviruses are included in the
CCL and were investigated in this study.

Members of the human calicivirus genus, noroviruses (NVs),
are a principal cause of nonbacterial acute gastroenteritis (11,
28) and have been identified as etiological agents of water-
borne outbreaks (20, 29, 31, 32). Caliciviruses range in diam-
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eter from 27 to 40 nm and have a single-stranded RNA ge-
nome and an icosahedral capsid structure. Commonly reported
symptoms include diarrhea and vomiting. Previous outbreaks
caused by NV-contaminated ice and cooked shellfish have sug-
gested that these viruses are capable of withstanding harsh
environmental conditions (16). Their ability to withstand cur-
rent drinking water disinfection practices is largely unknown,
since there are no known animal or mammalian cell culture
systems that determine NV infectivity. Due to these difficulties,
two alternative studies, a human feeding study and a PCR-
based study, were carried out previously (30, 41). However,
conflicting results between these studies made conclusions re-
garding NV chlorine resistance difficult. More recently, an NV
surrogate, feline calicivirus (FCV), has been used as a surro-
gate for NV inactivation in several disinfection studies (9, 36,
42, 44, 45). Since FCV has genome organization (7, 26) and
capsid architecture (38) similar to those of NVs and can be
easily grown in cell culture, it is an appropriate surrogate for
NV. Chlorine inactivation experiments carried out with FCV
resulted in conclusions similar to those reported in the NV
PCR-based study. Results from these two studies suggest that
chlorine is effective at reducing these caliciviruses by 4 logs at
commonly applied chlorine concentrations (44).

Like NVs, the enteric adenoviruses, enteric adenovirus 40
(AD40) and AD41, are also important causes of self-limiting,
acute gastroenteritis, especially in children �4 years of age
(23). Ranging from 70 to 90 nm in size, these viruses are
considerably larger than noroviruses, and their capsid structure
is complex. The adenovirus icosahedron contains 240 hexons,
12 pentons, and 12 fibers that extend from each penton base;
its genome consists of linear, double-stranded DNA. Enteric
adenoviruses are shed in high numbers in the feces (2), are
typically shed in the feces for long periods, and infection can be
caused by low numbers of viral particles (16, 23). Enteric ad-
enoviruses have greater environmental stability than other en-
teric viruses (10), so their presence in sewage and surface water
makes them likely contaminants in public water supplies (24,
25). Moreover, enteric adenoviruses and noroviruses were
identified as two of the etiological agents causing acute gas-
troenteritis in a waterborne outbreak in Finland (31), and
waterborne outbreaks of pharyngoconjunctivitis from swim-
ming have been reported for nonenteric adenoviruses (13, 37).
Enteric adenoviruses are susceptible to chlorine (44) but are
very resistant to UV light (45).

Based on previous viral disinfection studies, the EPA pub-
lished the Guidance Manual for Compliance with the Filtration
and Disinfection Requirements for Public Water Sources (46). Ct
values, which are the disinfectant concentration (C) multiplied
by the contact time (t) between the disinfectant and microor-
ganism, for 2- to 4-log viral inactivation by ClO2 and other
water disinfectants at different pH and temperature conditions
are listed in the manual. Ct values for viral inactivation are
based on experiments conducted with hepatitis A virus (HAV).
The guidance manual’s Ct values (in milligrams per liter, mul-
tiplied by the number of minutes) direct public water utilities
to ensure that disinfection practices meet regulatory microbial
log inactivation requirements. However, ClO2 Ct values may
not be adequate for caliciviruses and adenoviruses whose sus-
ceptibility to this disinfectant is largely unknown.

The objectives of this study were to (i) compare viral inac-

tivation by ClO2 for AD40 and FCV in water under high- and
low-pH (pH 8 and 6) and -temperature (15°C and 5°C) condi-
tions, (ii) use a previously described disinfection model to
determine Ct values for each virus and experimental condition,
and (iii) compare predicted Ct values to the EPA guidance
manual Ct values and disinfection practices commonly applied
in the United States.

MATERIALS AND METHODS

Virus propagation and assay. AD40 (strain Dugan), FCV (strain F9), primary
liver carcinoma cell line (PLC/PRF/5), and Crandell Reese feline kidney cell
lines were obtained from the American Type Culture Collection (Rockville,
MD). AD40 and FCV stocks were propagated, enumerated, concentrated, and
purified to reduce disinfection demand in the same manner described by Thur-
ston-Enriquez et al. (45). All viral stocks were stored at 4°C until use. Determi-
nation of viral titer before and after chlorine disinfection was accomplished by
assaying 5- or 10-fold dilutions in quadruplicate in 24-well tissue culture trays
with the appropriate cells in suspension (44).

ClO2 production and measurement. ClO2 was generated using the iodometric
method (4). ClO2 concentrations of the stock solution and in buffered, disinfec-
tant demand-free (BDF) water throughout disinfection experiments were mea-
sured according to Hach (Loveland, CO) DPD method 10126 with a Hach
DR2000 spectrophotometer.

Experimental protocol. Glassware and BDF water were prepared. The exper-
imental protocol was carried out according to protocols used by Thurston-
Enriquez et al. (45). Briefly, BDF water was kept at a constant temperature (5°C
or 15°C) in a refrigerated water bath. ClO2 was added at a volume necessary to
achieve an initial disinfectant dose close to 0.50 mg/liter or 1.0 mg/liter. Chlorine
dioxide doses applied in this study’s disinfection experiments ranged from 0.47 to
1.01 (Table 1). Four experimental reaction beakers were analyzed for every
experimental condition. The first beaker, containing only BDF water and ClO2,
was measured at 15 s to determine the initial disinfectant dose (at 15 s) in the
absence of disinfectant demand from the viral stock. The second and third
reaction beakers were inoculated with one of the studied viruses, FCV or AD40,
at concentrations that would allow detection of at least 2 logs of viral inactiva-
tion. The second and third beakers were also inoculated with ClO2 and imme-
diately stirred. The second beaker was sampled to determine disinfectant con-
centration at the beginning (15 s) and end of each disinfection experiment. These
measurements were necessary to determine disinfectant demand of each viral
preparation and disinfectant decay during each experiment. To determine viral
inactivation, 2-ml samples were taken from the third beaker at predetermined
times throughout the reaction. These 2-ml samples were immediately inoculated
into collection tubes containing 20 �l of sterile 10% sodium thiosulfate solution
to quench any residual disinfectant activity. The fourth reaction beaker, or
control beaker, contained only virus and BDF water and was considered to be

TABLE 1. Summary of BDF water conditions and EFH model
coefficients for AD40 and FCV chorine dioxide

disinfection experiments

Virus

BDF water
conditions No. of

replicates
k�

(min�1) ka na ma

ClO2
b

(mg/liter) °C pH

AD40 0.51 5 6 2 0.03 8.32 0.62 0.57
AD40 0.53 5 8 2 0.04 362.0 6.01 0.60
AD40 0.49 15 6 2 0.10 5.61 0.01 0.80
AD40c 0.47 15 8 2 0.14 44.87 0.01 1.10
FCV 1.01 5 6 5 0.03 1.59 0.01 0.52
FCV 0.90 5 8 4 0.03 8.58 0.01 0.40
FCV 0.84 15 6 4 0.05 2.20 0.01 0.67
FCVd 0.72 15 8 3 0.07 167.01 0.01 2.17

a EFH model parameters k, n, and m are dimensionless.
b Average ClO2 concentration applied in replicate experiments.
c Virus not detected by cell culture assays after 15 s of contact time and

�4.21-log inactivation.
d Virus not detected by cell culture assays after 15 s of contact time and

�4.15-log inactivation.
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representative of viral concentrations per milliliter of BDF water in beakers two
and three. This control beaker was necessary to (i) determine the initial virus
concentration for every experiment and (ii) evaluate whether virus inactivation
occurred under the tested BDF water, pH, and temperature conditions (in the
absence of disinfectants). Viral samples were kept on ice during the experiment
and then stored at 4°C until assay.

Kinetic modeling and Ct values. Chlorine decay constants (k�) for each exper-
iment were calculated using the Solver function in Microsoft Excel 2000 (Mi-
crosoft Corp.) to regress the first-order kinetic equation (equation 1) using the
least-squares method.

C � C0 exp(�k�t) (1)

where C and C0 are the ClO2 residual (in milligrams per liter) at time t (in
minutes) and time 0.25 min (the closest possible measurement to time zero),
respectively; k� is the first-order disinfectant decay rate constant (per minute)
(19). Disinfectant decay (k�) values are listed in Table 1 for each set of disin-
fection experiments.

Efficiency factor Hom (EFH) model parameters (Table 1) and Ct values
(Table 2) were calculated by applying the EFH model (equation 2) to data
obtained from bench-scale disinfection experiments (19). The EFH model is an
analytical approximation of the incomplete gamma Hom (IGH) model. These
models are considered to adequately describe the kinetics of disinfection exper-
iments that do not follow Chick-Watson relationships and are subject to disin-
fectant decay (19). Unlike the IGH model, the EFH model enables researchers
to describe disinfection kinetics by using mathematical functions available in
commonly used computer packages such as Microsoft Excel (Microsoft Corp.)
(19). IGH and EFH models have been employed to describe disinfection kinetics
in previous studies (17, 18, 33) and have been used to predict enteric adenovirus
type 40 and feline calicivirus inactivation by chlorine (44).

Viral most-probable-number values for each experiment, grouped by virus
type, pH, and temperature conditions, were fit into the EFH model (equation 2)

lnN/N0 � � kC0tm � ��1 � exp(�nk�t/m	/�nk�t/m	
 (2)

where t is exposure time (min), k is the viral inactivation rate constant (dimen-
sionless), n is the coefficient of dilution (dimensionless), k� is the first-order
disinfectant decay rate constant (per minute), and m is the constant for the
inactivation rate law which describes deviation from ideal Chick-Watson kinetics
(dimensionless) (13). ln N/N0 is the natural log of the survival ratio (the number
of viruses remaining at time t divided by the initial viral concentration). Microsoft
Excel Solver (Microsoft Excel 2000; Microsoft Corp.) was used to minimize the
sum of squares of the difference between the observed and ln N/N0 value for viral
disinfection experiments performed with the same virus and conditions, to de-
termine EFH model coefficients for each viral and set of conditions (Table 1).
Using GraphPad Prism version 4.00 for Windows (San Diego, CA), average viral
concentrations versus time were charted for observed viral inactivation and for
values fitted by the EFH model (Fig. 1 and 2).

A Ct value is determined by multiplying the disinfectant concentration (C) in
milligrams per liter by the time (t) in minutes when a specific log inactivation (2,
3, or 4 log; 99%, 99.9%, or 99.99%) occurred. Ct values (Ct99.0%, Ct99.9%, and
Ct99.99%) were used to assess viral sensitivity to ClO2 and evaluate the ability of
the EFH model to fit data obtained from bench-scale viral inactivation experi-
ments (Table 2). EFH model Ct99.99% values were determined through applica-
tion of EFH model parameters (Table 1). A value of 0.0001 for k� (conditions of
negligible disinfectant decay) was used for EFH Ct values. This value was chosen

to produce baseline Ct values and because k� varied between experiments. The
average ClO2 dose applied in replicate experiments was also used to determine
EFH model Ct values. Ct value ranges were calculated by multiplying the average
ClO2 concentration applied for each set of replicate experiments by the closest
time points to 4-log viral inactivation. For example, AD40 experiments con-
ducted at pH 8 and 5°C had an average log inactivation of 3.41 and 4.21 at 1.5
min and 3 min, respectively. The average ClO2 dose for this set of experiments
was 0.53 mg/liter. The range, therefore, is �0.80 to �1.59 mg/liter � min.

Statistical analysis. Average microbial concentrations and standard deviations
were calculated and graphed using GraphPad Prism, version 4.00, for Windows
(San Diego, CA). F tests were carried out using Microsoft Excel 2000 (Microsoft

TABLE 2. AD40 and FCV Ct99.99% ranges observed from bench-scale inactivation experiments, Ct99.99% values calculated by fitting the EFH
model to bench-scale data, and EPA guidance manual Ct99.99% values

BDF water
conditions Ct99.99% (mg/liter � min)

°C pH AD40 observed
ranges

AD40 EFH
modela

FCV observed
ranges

FCV EFH
modela

EPA guidance
manual

5 6 �0.77 to �1.53 1.28 �20.20 to �30.30 20.85 33.5
5 8 �0.80 to �1.59 0.67 �0.68 (3.60 log)b 1.08 33.5

15 6 �0.49 to �0.74 0.92 �4.20 to �6.72 7.13 16.8
15 8 �0.12c 0.11 �0.18d 0.19 16.8

a Ct values calculated using k� � 0.0001 (conditions of negligible disinfectant decay).
b Duration of experiment was not long enough to achieve 99.99% inactivation. Ct value corresponds to 3.60-log inactivation by 45 s.
c Value is �4.21-log inactivation by 15 s.
d Value is �4.15-log inactivation by 15 s.

FIG. 1. Observed and EFH model AD40 ClO2 inactivation curves
(ClO2 doses ranged from 0.47 to 0.53 mg/liter in buffered, demand-free
water).

3102 THURSTON-ENRIQUEZ ET AL. APPL. ENVIRON. MICROBIOL.



Corp.) to determine whether differences in viral inactivation were significant (P
� 0.05) between different viruses and pH and temperature conditions.

RESULTS

ClO2 disinfection experiments were carried out in at least in
duplicate for AD40 and FCV under high- and low-pH and
-temperature conditions in BDF water. The EFH model was
used to model disinfectant inactivation kinetics for every ex-
perimental condition applied to each virus. Table 1 lists BDF
water conditions applied to viral disinfection experiments and
parameter estimates for EFH model analysis.

Table 2 compares Ct99.99% ranges observed from bench-
scale inactivation experiments, Ct99.99% values calculated by
fitting the EFH model to bench-scale data, and EPA guidance
manual Ct99.99% values. The EFH model fit the observed
bench-scale data well, producing Ct99.99% values close to or
within the range of observed Ct99.99% values. AD40 and FCV
EFH Ct99.99% values were lower than Ct99.99% values recom-
mended in the EPA guidance manual for viral inactivation in
water.

When observed Ct99.99% ranges and EFH Ct99.99% values
were compared, it was noted that FCV is more resistant to
ClO2 than FCV for most of the conditions studied. Differences
in viral sensitivities under pH 8 and 15°C conditions, however,
are unclear, since AD40 and FCV were completely inactivated

by the first sample collection taken at 15 s. For all other tested
conditions, FCV appears to be much more resistant to ClO2

than AD40.
The Ct99.99% ranges calculated for viral inactivation are dif-

ficult to compare when 4-log inactivation was not observed. At
pH 8 and 5°C, the FCV Ct99.99% range is �0.68, since only
3.60-log inactivation was observed at the last time point sam-
pled. For this set of experiments, 3.60 log was inactivated
within 45 s. For FCV inactivation at pH 6 and 5°C, however, an
average of only 0.90 logs was inactivated by 1 min. Thus, FCV
appears to be more resistant at pH 6 than at pH 8. This
difference is better reflected by comparing EFH model
Ct99.99% values where the difference in inactivation rates is
obvious between FCV inactivation at pH 6 (20.85 mg/liter �
min) and pH 8 (1.08 mg/liter �min).

Observed bench-scale viral inactivation curves and EFH
model inactivation curves for all tested water conditions are
shown in Fig. 1 and 2. Data points listed as observed in the
charts are average viral concentrations from replicate bench-
scale experiments. Fitting bench-scale viral inactivation data
into the EFH model generated curves listed as EFH. Signifi-
cant differences (P � 0.05) in viral inactivation rates for high-
and low-temperature and -pH conditions were observed. For
AD40 experiments conducted at 5°C, inactivation rates are not
significant, starting at the 1-min time point (Fig. 1). However,
the rate of AD40 inactivation was higher under pH 8 condi-
tions than under pH 6 conditions for the first 30 s. Tailing of
the curves was similar, resulting in insignificant inactivation
from the 1-min to the 3-min time point. Viral inactivation rates
were higher for experiments carried out at pH 8 than at pH 6
(AD40, 15°C; FCV, 5 and 15°C) and 15°C than at 5°C.

DISCUSSION

To our knowledge, this is the first report of ClO2 inactivation
of enteric adenovirus and generation of Ct values for ClO2

inactivation of AD40 and FCV in water at high- and low-pH
and -temperature conditions. This information is important
not only for evaluation of ClO2 as a secondary disinfectant for
water systems employing UV light but also for systems utilizing
ClO2 as a primary disinfectant. Ct99.99% values, calculated
based on bench-scale experiments and those predicted by the
EFH model for AD40 and FCV, suggest that EPA guidance
manual Ct values (46) are sufficient for reducing these viruses
in treated water under the temperature and pH conditions
tested by this study. Considering that the range in ClO2 dosage
employed by the United States water industry is 0.07 to 2.0
mg/liter (47) and that the average contact time is 237 min
(derived from water treatment plants employing chlorination)
(49), the studied viruses would be inactivated by at least 4 logs
for the majority of water conditions studied. However, using
the average contact time (237 min), the range in Ct values
would be from 16.59 to 474 mg/liter � min for water systems in
the United States. The Ct99.99% value for FCV in BDF water at
pH 6 and 5°C, however, was within this range (Ct99.99% � 20.85
mg/liter � min).

Viral inactivation kinetics varies between different viral
types, disinfectants, and water disinfection conditions. EFH
model Ct99.99% values for ClO2 inactivation experiments at 5°C
were 1.28 and 0.67 mg/liter � min for AD40 and 20.85 and 1.08

FIG. 2. Observed and EFH model FCV ClO2 inactivation curves
(ClO2 doses ranged from 0.72 to 1.01 mg/liter in buffered, demand-free
water).
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mg/liter � min for FCV for BDF water at pH 6 and 8, respec-
tively. Thus, Ct99.99% values for AD40 and FCV were 1.9 and
19.3 times higher at pH 6 than at pH 8, respectively. Previous
studies have also shown that the potency of ClO2 is increased
at higher pH levels. IT has been reported that poliovirus type
1 is inactivated by ClO2 4.6 times faster at pH 9 than at pH 7
(8). In related studies, poliovirus (3), coliphage f2 (35), and
Norwalk (norovirus) virus, poliovirus, and coliphage MS-2 (41)
were more rapidly inactivated by ClO2 at pH 10 than at pH 6.

The rate of microbial inactivation generally increases by a
factor of 2 or 3 as temperature increases by 10°C (22). Results
generated by Cronier et al. (8) demonstrate that poliovirus
type 1 was more rapidly inactivated in pH 7 BDF water at 15°C
than at 5°C. Inactivation curves illustrated that poliovirus was
roughly 3.5 times more resistant to ClO2 at 5°C than at 15°C
(8). Similar to AD40 and FCV inactivation by chlorine (44),
the disinfection efficiency of ClO2 increased at higher experi-
mental temperatures. At pH 6 and 5°C, the Ct99.99% value was
1.39 and 2.9 times higher than pH 6 and 15°C for AD40 and
FCV, respectively.

ClO2 Ct values for AD40 and FCV are higher than those
reported for chlorine at pH 6 and 8 (44). This is a contradiction
of earlier reports that demonstrated increased viral inactiva-
tion by ClO2 at high pH levels compared to chlorine (27, 39).
For example, Ct99.99% values for rotavirus inactivation by chlo-
rine and ClO2 at pH 10 and 5°C revealed that the Ct99.99% was
0.14 mg/liter � min (0.1 mg/liter chlorine dose for 1.4 min) for
chlorine and �0.13 mg/liter � min (0.5 mg/liter ClO2 dose for
15 s or less) for ClO2 (39). Other studies, however, have re-
ported that ClO2 and chlorine inactivation were similar for
poliovirus (8) and coxsackievirus (40, 47). Similar to the results
observed in the current study, Shin and colleagues (41) re-
ported that ClO2 did not reduce poliovirus type 1, coliphage
MS-2, and Norwalk virus as rapidly as free chlorine. Harakeh
et al. (21) observed varying susceptibilities of viruses to differ-
ent disinfectants. Coliphage f2 was more resistant to chlorine
but less resistant to ClO2 than enteroviruses (coxsackievirus,
echovirus, and poliovirus). Harakeh et al. (21) demonstrated
that viral inactivation could differ for one virus challenged by
different disinfectants or under different disinfection condi-
tions. In the current study, FCV was more resistant to chlorine
dioxide than to chlorine. For chlorine disinfection in water,
however, our group observed that AD40 was more resistant
than FCV. These results support early recommendations re-
garding the cautious use of indicator viruses as models for
disinfectant efficacy (21). Proper evaluation of disinfectant ef-
ficacy should include representative enteric viruses known or
thought to occur in source water and under various conditions
typical of source water.

Very few studies have been conducted on enteric viral ClO2

inactivation in water. In comparison to a few of these earlier
studies, AD40 inactivation appears to be comparable to other
viruses. For example, AD40 Ct99.0% values fall within the
Ct99.0% ranges for poliovirus (0.2 to 0.67 mg/liter � min) and
rotavirus (0.2 to 0.3 mg/liter � min) (15, 43). In the current
study, the EFH Ct99.0% value calculated for AD40 at pH 6 and
5°C was 0.38 mg/liter � min. For HAV inactivation in water
(pH 6), however, it appears that HAV (Ct99.99% � 16.75 mg/
liter � min) is much more resistant than AD40 (Ct99.99% �

0.83 mg/liter � min) but less resistant than FCV (Ct99.99% �
20.85 mg/liter � min) (46).

EFH Ct values provided a means for comparison of compli-
cated data, taking into consideration replicate experiments
that varied in viral concentration, disinfectant dose, disinfec-
tant demand, and viral inactivation kinetics under different
water conditions. Overall, the EFH model fit bench-scale in-
activation data well for all tested conditions. EFH Ct values
were within or slightly higher than Ct ranges derived from
bench-scale experiments. When considering that replicate ex-
periments varied in viral inactivation, ClO2 dose, and disinfec-
tant decay, EFH curves modeled bench-scale inactivation data
very well. The use of this model to accurately predict Ct values
out of the range of bench-scale experiments, however, needs to
be evaluated.

All disinfection reactions were carried out in BDF water that
was inoculated with purified (removal of cell debris) and dis-
persed (chloroform extraction) AD40 and FCV virus stocks.
The controlled disinfection reactions described in this paper
provide baseline information necessary for understanding
ClO2 efficacy against CCL viral pathogens in treated water
under high- and low-pH and -temperature conditions. Studies
of chlorine inactivation of aggregated FCV, however, reported
Ct99% values 31.0 times higher than those observed for dis-
persed FCV virus particles (44). Moreover, Ct values for chlo-
rine inactivation of AD40 and FCV in groundwater were
higher than those calculated for experiments conducted with
BDF water (44). Further studies are needed to determine
whether EPA guidance manual ClO2 Ct values are adequate
for reducing viruses in an aggregated state, associated with
particulate matter, and in natural waters.
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